
Spontaneous nucleation of localized peaks in a multistable nonlinear system

Umberto Bortolozzo,1,2 René Rojas,1 and Stefania Residori1
1Institut Non-Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France
2Istituto Nazionale di Ottica Applicata, Largo E. Fermi 6, 50125 Florence, Italy

�Received 23 December 2004; published 7 October 2005�

In a nonlinear optical experiment we report a unique class of localized structures, which appears as localized
peaks of a pattern nucleating over another pattern. We show that this occurs when the system is driven through
three pattern branches of solutions, accompanied by the appearance of localized peaks with two different
amplitudes. Spontaneous creation and motion of localized peaks are triggered by amplitude and phase fluc-
tuations of the underlying pattern. The scenario is universal and applies whenever a subcritical bifurcation
exists between two different pattern solutions.
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Localized structures are ubiquitous in nature �1�, appear-
ing in different fields of physics, chemistry, geophysics, etc.
Several universal classes of localized states have been iden-
tified thus far �1,2�. However, an exhaustive classification of
all possible types of localized states has not been available
up to now. Starting from an experimentalist point of view, we
can give a phenomenological classification of localized
structures: those observed in thermal convection when there
is bistability between a homogeneous state and a spatial pat-
tern �3�, localized pulses in Faraday instability �4�, oscillons
in vibrated grains �5�, and cavity solitons in optics �6�. How-
ever, when looking to the phase space of solutions the situ-
ation is much more complex, and intriguing features of lo-
calized states may appear, such as their coupling in bound
states �7�, or their triangular shape, as recently observed in a
liquid-crystal-light valve �LCLV� with optical feedback �8�.

We report here a unique type of localized structures,
which we call localized peaks, appearing as bright isolated
spots over a spatial pattern of lower amplitude. We show that
localized peaks exist whenever the system presents a sub-
critical bifurcation between two different pattern states. Cre-
ation and motion of localized peaks are spontaneously trig-
gered by amplitude and phase fluctuations of the underlying
pattern. These features of localized peaks, as well as the
scenario for their appearance, are very general and can apply
to any system showing coexistence between two different
patterns. Note that temporally harmonic oscillons localized
on a patterned background have been recently reported in
parametrically driven surface waves in Newtonian fluids �9�.

The experimental setup, consisting of a LCLV in an opti-
cal feedback loop, is the same as the one reported in �8�. The
LCLV is composed of a nematic liquid-crystal film sand-
wiched in between a glass and a photoconductive plate over
which a dielectric mirror is deposed. The liquid-crystal film
is planar aligned �nematic director n� parallel to the walls�,
with a thickness d=15 �m. Transparent electrodes over the
glass plates permit the application of an external voltage V0
across the liquid-crystal layer. The photoconductor behaves
like a variable resistance, which decreases for increasing il-
lumination. The feedback is obtained by sending back onto
the photoconductor the light which has passed through the
liquid-crystal layer and has been reflected by the dielectric
mirror. The light beam experiences a phase shift which de-

pends on the liquid-crystal reorientation and, in its turn,
modulates the effective voltage that locally applies to the
liquid crystals. The feedback loop is closed by an optical
fiber bundle and is designed in such a way that diffraction
and polarization interference are simultaneously present �8�.
The optical-free propagation length is fixed to L=−40 mm.
The angles of the polarizers are at 45° with respect to the
liquid-crystal director n� . The free end of the fiber bundle is
mounted on a precision rotation and translation stage in order
to avoid rotation or translation in the feedback loop.

We fix a rms value of V0=12.3 V, with a frequency
6 KHz. The period of the sinusoidal voltage V0 is much
shorter than the liquid-crystal response time and of the typi-
cal times for liquid-crystal hydrodynamics instabilities, such
as electroconvection �10�. Thus, liquid crystals are sensitive
only to the rms value of the applied voltage and perform a
static reorientation. Hydrodynamical effects, such as back-
flow, are avoided and the molecular realignment is a pure
Fréedericksz transition �11�.

By increasing the input light intensity Iin we observe a
sequence of transitions, as shown by the experimental snap-
shots of Fig. 1. The homogeneous steady-state loses stability
and develops a pattern of hexagons that we call P1 �Fig.
1�a��. Pattern P1 is due to diffraction in the optical feedback
loop, which converts the phase modulation acquired by the
light when passing through the LCLV into an intensity

FIG. 1. Experimental snapshots showing the sequence of local-
ized peaks appearance: Iin= �a� 0.32, �b� 0.38, �c� 0.40, �d� 0.41, �e�
0.42, and �f� 0.52 mW/cm2.
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modulation. Due to the presence of the photoconductor, the
intensity modulation changes, in its turn, the voltage applied
to the liquid crystals and hence the phase shift on the incom-
ing light beam. It is known that, under such a diffractive
feedback, the LCLV system shows hexagonal patterns simi-
lar to P1, with a spatial length that scales as ��L, with �
being the optical wavelength and L the light free propagation
length �12�.

By further increasing Iin, localized peaks of higher ampli-
tude appear over P1 �Fig. 1�b��. Then, localized peaks with a
third higher value of the amplitude appear and coexist with
the lower amplitude peaks, as shown in Figs. 1�c� and 1�d�.
We suppose the existence of a pattern P2�P3�, whose ampli-
tude corresponds to that of the first �second� type of localized
peaks, that we call, therefore, P12�P13�. In a similar way,
bistability between two different-amplitude localized struc-
tures has been attributed to the coexistence of two different
patterns in the LCLV system �8�. By continuing to increase
Iin, P13 peaks dominate over P12 and start to invade all space.
By doing this, localized P13 peaks form large aggregations
that propagate over the pinning sites of the underlying P1
pattern. A typical picture of such a pinned aggregate is
shown in Fig. 1�e�, where a front can be distinguished be-
tween P13 and P1. The front dynamics are characterized by
the spontaneous nucleation of P13 peaks, as driven by the
amplitude fluctuations of P1. When Iin becomes sufficiently
high for the pinned front to overcome the nucleation barrier,
P13 peaks expand over all the available space, until pattern
P3 is formed �Fig. 1�f��.

The final state P3 shows a dynamical behavior largely
dominated by spatiotemporal chaos, with large local ampli-
tude fluctuations and phase-driven motion of spatially uncor-
related domains. However, P1 and P3 are identified by the
different values of their amplitude and also by their different
spatial wavelengths and corresponding wave numbers. In
Figs. 2�a� and 2�b� are displayed the far-field images corre-
sponding to the spatial power spectra of P1 and P3, respec-
tively, showing the change of critical wave number when
passing from P1 to P3. The corresponding spatial wave-
lengths, measured in the near-field images, are d1=2� /q1
�210±30 �m and d3=2� /q3�290±60 �m for P1 and P3,
respectively. Note that the q3 spectral component is rather
broadened by the space-time chaotic dynamics of P3,
whereas the spatial spectrum of P1 is that of a hexagonal
pattern. Concerning P2, it is not possible to distinguish ex-
perimentally a pattern with an amplitude intermediate be-
tween P1 and P3. Indeed, P2 always coexists with P1 and P3
and thus only manifests itself by the appearance of P12 peaks

nucleating spontaneously over P1. For this reason, d2 can
only be evaluated as the width of individual P12 peaks and,
thus, it is not strictly speaking a “wavelength.” If we take the
half-height width of P12 as an estimation of d2, we find ap-
proximately the same value as for d3.

We show in Fig. 3 the experimental bifurcation diagram:
the pattern peak intensity �Ip� is plotted as a function of the
input intensity Iin. The successive branches correspond, re-
spectively, to the homogeneous steady state �HSS�, losing
stability with respect to P1, and to P12 and P13 peaks, this
last one becoming P3 for high Iin. For each value of Iin, �Ip�
is measured as an average of the pattern maxima by adopting
the following procedure. By means of a computer interfaced
charge-coupled device �CCD� camera, we record several
near-field images. Then, we apply a threshold, in order to
keep only the maxima of the patterns, and we make an en-
semble average over the maxima. As schematically depicted
in the inset of Fig. 3, when P12 and P13 coexist over the
pattern P1 we apply a double threshold filtering in such a
way to single out the amplitude of P1, P12, and P13 into three
separate frames. Then the three values of �Ip� are measured
by making the ensemble average of all the maxima over each
frame. The amplitudes of the three states being well sepa-
rated, the resulting �Ip� values do not depend on the choice of
the threshold level, as long as this level is changed approxi-
mately 10%, as we have verified. When decreasing Iin, we
observe, both for P12 and P13, the same bifurcation diagram
as the one for increasing Iin. Hysteresis is prevented by the
noise-induced mechanism of localized peaks creation, as
these events are mainly driven by the amplitude fluctuations
of P1.

The theoretical model for our LCLV system was previ-
ously derived in �13� and consists of two coupled equations,
one for the average director tilt ��r� , t�, 0���� /2, and one
for the feedback light intensity Iw. The equation for the di-
rector reads as

FIG. 2. Far-field images showing the change of critical wave
number when passing from �a� P1 to �b� P3.

FIG. 3. Experimental bifurcation diagram �Ip� as a function of
Iin. HSS: homogeneous steady state; filled squares ���: P1; empty
circles ���: P12; filled circles ���: P13; empty squares ���: P3. In
the inset is plotted a one-dimensional spatial intensity profile; the
dashed lines are the thresholds applied to single out the three am-
plitude states.
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��t� = l2��
2 � − � + f��� , �1�

where l is the electric coherence length, � the local relaxation
time, and f��� a function taking into account the response of
the photoconductor to the feedback intensity Iw : f���=0
when V�	VFT and f���=� /2�1−�	VFT /V� when
V
	VFT, with V the voltage that effectively applies to the
liquid crystals

V = 	V0 + �Iw��� , �2�

and VFT the threshold voltage for the Fréedericksz transition.
	 is the impedance of the LCLV dielectric layers and � a
phenomenological parameter summarizing, in the linear ap-
proximation, the response of the photoconductor. After a free
propagation length L, the feedback light intensity is given by

Iw =
Iin

4
	ei�L�/4����

2
�1 − e−i� cos2 ��	2, �3�

the diffraction being accounted for by the operator

ei�L�/4����
2

. Similar relationships between the tilt angle and
the optical intensity distribution have been previously de-
rived for light diffraction in electroconvective liquid-crystal
cells, where far-field diffraction �14� or shadowgraph meth-
ods �15� were employed for pattern visualization, but without
any feedback of light onto the tilt angle. Recently, electrohy-
drodynamic convection in a nematic liquid-crystal cell with a
photoconductive electrode has been reported �16�. In such a
case, though there was no feedback, the light beam was act-
ing as an external photocontrol, locally modifying the volt-
age applied to the liquid crystal.

Anyway, the relationship between the tilt angle and the
light intensity is very complicated, and a comparison be-
tween the light intensity pattern and the � distribution inside
the liquid-crystal cell is not straightforward. We have per-
formed numerical simulations of our model, Eqs. �1�–�3�,
and we have found that, for the same values of Iin, near-field
intensity patterns and � patterns look very similar. The other
parameters are 	=0.3, �=5.5 V cm2/mW, VFT=3.5 V,
l=30 �m, �=632 nm, L=−40 mm. In Fig. 4 are displayed
the numerical snapshots of � corresponding to P1, to P12,
P13, and to P3. By comparing with Fig. 1, we can see that �
patterns are in fairly good agreement with the experimental
snapshots for the light intensity. Numerical simulations of a
spin-1 /2 atomic system with optical feedback, showing simi-
lar patterns, have been recently reported �17�.

We study the linear stability of the spatial homogeneous
solution �0 by writing �=�0+�1e�teiq� ·r�, where �1 is the spa-
tial perturbation and we find the dispersion relation
��q� for the most unstable modes: �=−q2−1−� cos��q2

+�0 /2�, where 4�=��Iin
�	VFT� sin��0 /2�sin�2�0� / �	V0

+�Iin sin2��0 /2��3/2, with �=−�L /4�l2 and �0=� cos2 �0.
We show in Fig. 5 the HSS solutions �0 as a function of �Iin.
These HSS are the same as the ones reported in �8,13� but in
the present case the homogeneous state becomes unstable
before the bistability with the upper homogeneous branch.
The unstable point, which corresponds to the bifurcation to
hexagons, can be controlled by changing the value of V0. For
each value of Iin, the most unstable modes for each HSS
branch have a wave number q1, q2, and q3, with d1=2� /q1
=190 �m and d3=2� /q3=260 �m, consistent with the P1
and P3 pattern scales experimentally observed. In the same
figure, Fig. 5, the numerical bifurcation diagram for the
maximum amplitude of � is plotted as a function of �Iin:
empty circles are the hexagonal solution P1; stars �plus� are
localized peaks P12�P13�; filled circles correspond to the
space-time chaotic state P3. Note that when the bifurcated P1
branch meets the second HSS branch, the hexagonal pattern
becomes irregular, showing amplitude fluctuations and de-
fects. A similar phenomenon has been reported in a model
describing the transition from hexagons to optical turbulence
�18�.

Note that in previous LCLV experiments, HSS was stable,
thus localized structures were observed as single isolated
spots over a spatially uniform background �8,13�. In the
present experiments, HSS is unstable and leads to pattern P1.
Localized states are then nucleated spontaneously over a
background which is spatially modulated. While in the case
of an uniform background localized structures are created by
local perturbations, either externally imposed or induced by
inhomogeneities in the LCLV, in the case of a spatially
modulated background localized peaks appear spontaneously
due to the intrinsic dynamics of the system. Indeed, the cre-
ation of localized peaks is mainly due to the amplitude fluc-
tuations of P1, these fluctuations acting as a noise source that

FIG. 4. Numerical snapshots of the angle � corresponding to
�a� P1 ��Iin=1 V, �max=0.92 rad�; �b� P12 and P13 ��Iin=2.6 V,
�max=0.99 and 1.01 rad for P12 and P13, respectively�; �c�
P3 ��Iin=3 V, �max=1.02 rad�.

FIG. 5. Numerical bifurcation diagram for the maximum ampli-
tude of � as a function of �Iin: continuous �dashed� lines are the
stable �unstable� HSS solutions �0; empty circles ���: hexagons P1;
stars ���: localized peaks P12; plus ���: localized peaks P13; filled
circles ���: space-time chaotic state P3.
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continuously supplies to the system enough “energy” to jump
from the lowest branch of solution to an upper one, with this
one being that of P2 or that of P3 depending on the amplitude
of the local fluctuation. Thus, both P12 and P13 peaks appear
spontaneously, and continuously move during the time, as
they are driven by the weakly chaotic dynamics of the un-
derlying P1 pattern. During their motion localized peaks fol-
low the phase dynamics of P1, slowly gliding and whirling
around defect cores and domain walls �19�.

In conclusion, we have identified a unique class of local-
ized structures that we call localized peaks, appearing when-
ever two patterns coexist in the same region of parameters.
We have shown the existence of such structures in a LCLV
with optical feedback and have found their location through
three pattern branches of solutions. We have also shown that
localized peaks are spontaneously created by the amplitude

fluctuations of the underlying pattern, which acts as a noise
source triggering the onset of localized states. Phase fluctua-
tions induce a weakly chaotic dynamics that drives the mo-
tion of localized peaks, diffusing randomly over the pinning
sites of the underlying pattern. This scenario is quite a gen-
eral one and should apply whenever a subcritical bifurcation
exists between two different patterns.

We gratefully acknowledge P. L. Ramazza for having
brought to our attention the existence of peak states in the
LCLV and for helpful discussions. R.R. acknowledges finan-
cial support from Beca Presidente de la República of the
Chilean Government. U.B. acknowledges financial support
from the FUNFACS European Project, No. 2005-004/
004868.

�1� M. Cross and P. Hohenberg, Rev. Mod. Phys. 65, 851 �1993�.
�2� S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 �1990�.
�3� J. Wu, R. Keolian, and I. Rudnick, Phys. Rev. Lett. 52, 1421

�1984�.
�4� W. S. Edwards and S. Fauve, J. Fluid Mech. 278, 123 �1994�.
�5� P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature

�London� 382, 793 �1996�.
�6� M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett. 73, 640

�1994�.
�7� B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, Phys.

Rev. Lett. 85, 748 �2000�.
�8� U. Bortolozzo, L. Pastur, P. L. Ramazza, M. Tlidi, and G.

Kozyreff, Phys. Rev. Lett. 93, 253901 �2004�.
�9� H. Arbell and J. Fineberg, Phys. Rev. Lett. 85, 756 �2000�.

�10� See, e.g., L. Kramer and W. Pesch, in Pattern Formation in
Liquid Crystals, edited by A. Buka and L. Kramer �Springer-
Verlag, New York, 1996�.

�11� P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. �Oxford Science Publications, Clarendon, 1993�.

�12� E. Pampaloni, S. Residori, and F. T. Arecchi, Europhys. Lett.
24, 647 �1993�.

�13� M. G. Clerc, A. Petrossian, and S. Residori, Phys. Rev. E 71,
015205�R� �2005�.

�14� T. O. Carroll, J. Appl. Phys. 43, 767 �1972�.
�15� S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, Exp.

Fluids 7, 412 �1989�.
�16� M. Henriot, J. Burguete, and R. Ribotta, Phys. Rev. Lett. 91,

104501-1 �2003�.
�17� Yu. A. Logvin, B. Schäpers, and T. Ackemann, Phys. Rev. E

61, 4622 �2000�.
�18� D. Gomila and P. Colet, Phys. Rev. A 68, 011801�R� �2003�.
�19� Y-Nan Young, H. Riecke, and W. Pesch, New J. Phys. 5, 135

�2003�.

BORTOLOZZO, ROJAS, AND RESIDORI PHYSICAL REVIEW E 72, 045201�R� �2005�

RAPID COMMUNICATIONS

045201-4


